For a 347 V~ switching application, a wireless PowPak CCO module (RMJS-CCO1-24-B) can be used to switch a traditional 347 V~ Power Pack to control a 347 V~ load. This is accomplished by having the power pack supply 24 V~ to the input of the PowPak module, and having the Normally Open (NO) output of the PowPak module providing a contact closure for the power pack. The power pack uses the contact closure to switch the 347 V~ load. See the wiring diagrams on the next page for details.

For remote switching control, the PowPak CCO module can be associated to various Radio Powr Savr wireless occupancy/vacancy sensors and select Pico wireless controls via Lutron Clear Connect RF technology. See Vive PowPak CCO module spec submittal (P/N 369909) for a list of compatible controls.

Additional Notes:

1. The PowPak CCO module is not a controllable load in the Vive software unless a Pico wireless control device has been associated.
2. The PowPak CCO module does not measure or calculate power, therefore does not contribute to the energy savings feature.
3. The PowPak CCO module is not visible via BACnet.

For more information regarding the functionality of the PowPak CCO device in Vive (or Vive standalone) system, please see the Vive PowPak CCO Module Spec (369909) at www.lutron.com.
PowPak CCO Wiring Diagram

Note: One RMJS-CCO1-24-B PowPak CCO Module cannot control multiple power packs (PP-347H).

Note: If using the Vive hub, the external power supply (PS-J-20W-UNV) must be used in this application and is powered by 120–277 V~. See diagram below for reference.
For applications where 120 V~ is available, a 0-10V PowPak module (RMJS-8T-DV-B) can be added for dimming 347 V~ loads. For these applications, use a power pack (PP-347H), 0-10V PowPak module (RMJS-8T-DV-B), and a PowPak CCO module (RMJS-CCO1-24-B). This is accomplished by having the power pack supply 24 V== to the input of the PowPak CCO module and having the Normally Open (NO) output of the PowPak CCO module providing a contact closure for the power pack to power on the lighting load. The power pack uses the contact closure to switch the 347 V~ load. To dim the load, supply a 120 V~ feed to the PowPak 0-10V module, then connect the purple (-) and gray (+) to all the 0-10V loads. See the wiring diagram on the next page for details.

For remote 0-10V control, the PowPak CCO module and PowPak 0-10V module can be associated to various Radio Powr Savr wireless occupancy/vacancy sensors and select Pico wireless controls via Lutron Clear Connect technology. See the Vive PowPak CCO module spec submittal (P/N 369909) on www.lutron.com for a list of compatible controls.

When programming such loads in Vive, for the purposes of accurate power consumption calculations, the wattage of the load should be assigned to the PowPak 0-10V module. The wattage of the PowPak CCO module should be left at 0 W to avoid double counting the power consumption of the load. Photo sensors should only be assigned to the PowPak CCO module if the load is specifically required to daylight to off, otherwise photo sensors should be assigned only to the PowPak 0-10V module. Note that loads controlled by both a PowPak 0-10V module and a PowPak CCO module will not fade to off because there is no delay on the PowPak CCO module.

Additional Notes:
1. The PowPak CCO module is not a controllable load in the Vive software unless a Pico wireless control device has been associated.
2. The PowPak CCO module does not measure or calculate power, therefore does not contribute to the energy savings feature.
3. The PowPak CCO module is not visible via BACnet.

For more information regarding the functionality of the PowPak CCO device in Vive (or Vive standalone) system, please see the Vive PowPak CCO Module Spec (369909) at www.lutron.com.
PowPak 0-10V Wiring Diagram

Note: One RMJS-CCO1-24-B PowPak CCO Module cannot control multiple power packs (PP-347H).